Small Business Innovation Research/Small Business Tech Transfer

Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase II

Completed Technology Project (2006 - 2007)

Project Introduction

ASRI proposes to develop an advanced and commercially viable Non-Intrusive Vibration Monitoring System (NI-VMS) which can provide effective on-line/offline engine vibration monitoring capabilities without relying on intrusive keyphasor speed measurements. Many powerful vibration signature analysis techniques for engine-health monitoring rely on key-phasor signals to extract/enhance critical fault signatures from noisy vibration measurements. In many situations (e.g. SSME HPOTP), such speed measurements are not available, usually due to the safety concerns of a key-phasor's intrusive installation (e.g.in a high-pressure liquid-oxygen environment for HPOTP). As a result, the ability/reliability for health monitoring and post-test diagnostic evaluation is severely limited. The proposed NI-VMS overcomes this problem by utilizing a novel signal analysis technique called Pseudo Key Phasor (PKP) to reconstruct a PKP signal directly from external vibration measurements. This procedure enables powerful signal analyses that require a key phasor to become applicable, greatly enhancing fault detection and diagnostic capabilities. NI-VMS can reduce the risks of catastrophic engine failure and improve the reliability of NASA's current/future propulsion systems. Phase I feasibility studies using SSME test data have successfully demonstrated the technical merits of NI-VMS. Phase II will complete design, development, and testing of the prototype NI-VMS hardware/software system.

Anticipated Benefits

Potential NASA Commercial Applications: NI-VMS has significant applications in commercial/DoD transportation, power generation industries, and the manufacturing sector where many aircraft/plant engines/machinery are not instrumented with key phasor due to safety/cost concerns. NI-VMS's unique capability in performing non-intrusive monitoring will exert a strong appeal for these industries to use it to meet industrial and commercial health-monitoring requirements in reducing the risks of catastrophic hardware losses and plant downtime. Benefits to U.S. industry will be realized through contributions to safer aircraft/spacecraft propulsion, more efficient power generation, reduced downtime, and reduced operation and maintenance costs.

Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase II

Table of Contents

Project Introduction		
Anticipated Benefits		
Organizational Responsibility	1	
Primary U.S. Work Locations		
and Key Partners	2	
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

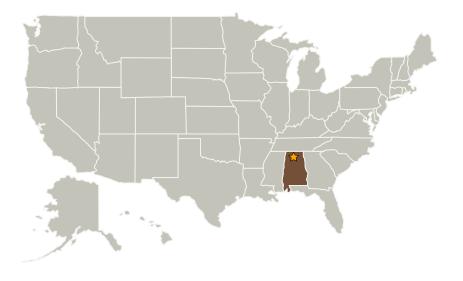
Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Marshall Space Flight Center (MSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer


Small Business Innovation Research/Small Business Tech Transfer

Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase II

Completed Technology Project (2006 - 2007)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
★Marshall Space Flight Center(MSFC)	Lead Organization	NASA Center	Huntsville, Alabama
AI Signal Research, Inc.	Supporting Organization	Industry Minority- Owned Business	Huntsville, Alabama

Primary U.S. Work Locations

Alabama

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Jen Jong

Technology Areas

Primary:

- TX10 Autonomous Systems

 TX10.2 Reasoning and
 Acting
 - □ TX10.2.5 Fault Diagnosis and Prognosis

